DEGREE OF MASTER OF SCIENCE

MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING

B1 Numerical Linear Algebra and Numerical Solution of Differential Equations

HILARY TERM 2018 FRIDAY, 12 JANUARY 2018, 9.30am to 11.30am

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question in a new booklet. All questions will carry equal marks.

Do not turn this page until you are told that you may do so

Section A: Numerical Solution of Differential Equations

1. The solution $[t_0, T] \ni t \to \mathbf{y}(t)$ to the initial value problem

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}(t_0) = \mathbf{y}_0, \qquad (1)$$

satisfies

$$\mathbf{y}(t+h) = \mathbf{y}(t) + \int_{t}^{t+h} \mathbf{f}(\tau, \mathbf{y}(\tau)) \, \mathrm{d}\tau \,.$$
(2)

To devise a one-step method to solve (1), one can replace the integral on the right-hand side of (2) with

$$h(1-\theta)\mathbf{f}(t,\mathbf{y}(t)) + h\theta\mathbf{f}(t+h,\mathbf{y}(t+h))$$

where $\theta \in [0, 1]$ is a real parameter. The resulting scheme reads

$$\Psi(t, t+h, \mathbf{y}) = \mathbf{y} + h(1-\theta)\mathbf{f}(t, \mathbf{y}) + h\theta\mathbf{f}(t+h, \Psi(t, t+h, \mathbf{y})).$$

- (a) [6 marks] Derive the Butcher table of this family of Runge-Kutta methods and write the formulas of its Runge-Kutta stages. For which values of θ is the method explicit?
- (b) [4 marks] Give the definition of consistency error and *consistency order* of a one-step method.
- (c) [10 marks] In the case that **f** is autonomous (so that $\mathbf{f}(t, \mathbf{y}) = \mathbf{f}(\mathbf{y})$), use Taylor expansion to verify that the Runge-Kutta scheme obtained by setting $\theta = 1$ has consistency order 1.
- (d) [5 marks] In the case that $\mathbf{f}(t, \mathbf{y}) = \mathbf{A}\mathbf{y}$ for a given matrix \mathbf{A} , show that the scheme obtained by setting $\theta = 1/2$ preserves quadratic invariants. State clearly any results you quote.

2. We consider the following family of quadrature rules

$$\int_{a}^{b} f(\tau) \,\mathrm{d}\tau \approx (b-a) f(a+\theta(b-a)) \,,$$

where $\theta \in [0, 1]$ is a real parameter. In particular, note that $\int_0^1 f(\tau) d\tau \approx f(\theta)$.

(a) [7 marks] Show that the Butcher table of the family of collocation Runge-Kutta methods based on these quadratures reads

$$\begin{array}{c|c} \theta & \theta \\ \hline & 1 \end{array}$$

[*Hint:* Let $s \ge 1$ and $i \in \{1, 2, ..., s\}$. The *i*-th Lagrange polynomial associated to s distinct points $c_1, ..., c_s$ is the polynomial of degree s - 1 that satisfies $L_i(c_j) = \delta_{ij}$.]

- (b) [4 marks] Derive the stability function of this family of Runge-Kutta methods (keeping θ generic).
- (c) [4 marks] Give the definition of: (i) *stability domain* of a Runge-Kutta method, (ii) *A*-*stability*, and (iii) *L*-*stability*.
- (d) [4 marks] Consider the IVP

$$y'(t) = (-10^9 + 4i)y, \quad y(0) = 1.$$

and denote by $\{y_k\}_{k\in\mathbb{N}}$ a sequence of approximations obtained by employing: (i) an explicit Runge-Kutta method, (ii) an A-stable (but not L-stable) Runge-Kutta method, and (iii) an L-stable Runge-Kutta method. For each case, describe the qualitative behaviour of $\{y_k\}_{k\in\mathbb{N}}$ and compare it to the qualitative behaviour of the exact solution to this IVP.

- (e) [6 marks] Show that, if the stability domain S_{Ψ} of a Runge-Kutta method Ψ satisfies $S_{\Psi} = \mathbb{C}^-$, then that Runge-Kutta Ψ method cannot be *L*-stable.
- 3. The first and second characteristic polynomials of the linear multi-step method BDF2 are

$$\rho(z) = z^2 - \frac{4}{3}z + \frac{1}{3} \text{ and } \sigma(z) = \frac{2}{3}z^2,$$

respectively.

- (a) [4 marks] Write the update formula of BDF2 in terms of $h, \mathbf{y}_n, \mathbf{y}_{n+1}, \mathbf{y}_{n+2}, \mathbf{f}(t_n, \mathbf{y}_n), \mathbf{f}(t_{n+1}, \mathbf{y}_{n+1}), \text{ and } \mathbf{f}(t_{n+2}, \mathbf{y}_{n+2}).$
- (b) [7 marks] Give the definition of *zero-stability* of a linear k-step method and describe how to verify this property using the root condition. Is BDF2 zero-stable?
- (c) [7 marks] Show that

$$\rho(\mathbf{e}^h) - h\sigma(\mathbf{e}^h) = \mathcal{O}(h^3) \,.$$

What can you conclude about the consistency order of BDF2?

(d) [7 marks] The linear multi-step method

$$\frac{11}{6}\mathbf{y}_n - 3\mathbf{y}_{n-1} + \frac{3}{2}\mathbf{y}_{n-2} - \frac{1}{3}\mathbf{y}_{n-3} = h\mathbf{f}(t_n, \mathbf{y}_n).$$

is implicit. Describe how to use Newton's method to approximate \mathbf{y}_n provided that $\mathbf{y}_{n-1}, \mathbf{y}_{n-2}$, and \mathbf{y}_{n-3} are available.

4. Consider the following parabolic boundary value problem

$$u_t(t,x) = u_{xx}(t,x), \text{ for } (t,x) \in (0,1] \times (0,1)$$

with homogeneous Dirichlet boundary conditions.

- (a) [8 marks] Following the method of lines, discretize this equation in space using a central difference scheme and derive the associate system of ODEs.
- (b) [4 marks] Show that for any $k, \Delta x \in \mathbb{R}$ and $j \in \mathbb{N}$,

$$\sin\left(k(j+1)\Delta x\right) - 2\sin\left(kj\Delta x\right) + \sin\left(k(j-1)\Delta x\right) = 2\left(\cos(k\Delta x) - 1\right)\sin\left(kj\Delta x\right)\right).$$

(c) [6 marks] Let $N = 1/\Delta x$. Show that the eigenvectors of the matrix

$$\mathbf{K} = \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & \\ & \ddots & \ddots & 1 \\ & & 1 & -2 \end{pmatrix} \in \mathbb{R}^{N-1,N-1}$$

are given by

$$\mathbf{z}_p^{\top} = \left(\sin(p\pi\Delta x), \sin(2p\pi\Delta x), \dots, \sin((N-1)p\pi\Delta x)\right), \quad p = 1, \dots, N-1.$$

What are the corresponding eigenvalues?

(d) [7 marks] Show that Runge-Kutta methods are affine covariant when applied to a linear system of ODEs $\mathbf{y}(t)' = \mathbf{M}\mathbf{y}(t)$, where $\mathbf{y} \in \mathbb{R}^d$ and $\mathbf{M} \in \mathbb{R}^{d,d}$. State clearly any results you quote.

Section B: Numerical Linear Algebra

- 5. Throughout this question we consider a rectangular matrix $A \in \mathbb{R}^{m \times n}$ and a nonsingular matrix $B \in \mathbb{R}^{n \times n}$.
 - (a) [4 marks] What is a QR factorisation of A? You do not need to show that such a factorisation exists.

What is an LU factorisation of B? You do not need to show that such a factorisation exists.

(b) [4 marks] If m > n, the columns of the given matrix A are linearly independent and $b \in \mathbb{R}^m$ is also given, explain how to solve the linear least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$$

using a QR factorisation.

- (c) [2 marks] If QR = B = LU, identify an LU factorisation of Q.
- (d) [3 marks] Supposing that all the required factorisations exist, let $B = B_1$ and

for k = 1, 2, ... $L_k U_k = B_k - \mu_k I$ (ie. perform an LU factorisation of $B_k - \mu_k I$) $B_{k+1} = U_k L_k + \mu_k I$ (ie. define B_{k+1} by matrix multiplication and addition of $\mu_k I$) end

where $\mu_k \in \mathbb{R}$ is such that $B_k - \mu_k I$ is invertible for every $k = 1, 2, \ldots$. Prove that all of the matrices $\{B_k, k = 1, 2, \ldots\}$ are mathematically *similar* to $B_1 = B$.

(e) [5 marks] If the matrix B is perturbed to $B + \delta B$, prove that

$$\frac{\|\delta x\|_2}{\|x+\delta x\|_2} \leqslant \|B\|_2 \|B^{-1}\|_2 \frac{\|\delta B\|_2}{\|B\|_2}$$

where Bx = b and $(B + \delta B)(x + \delta x) = b$ with $x \neq -\delta x$. What is the relevance of this inequality to the computational solution of a linear system of equations?

(f) [7 marks] Calculate $||B||_2 ||B^{-1}||_2$ for the matrix

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Identify $||C||_2 ||C^{-1}||_2$ for the matrix

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$
?

Give your reasoning.

6. If $A = M - N \in \mathbb{R}^{m \times m}$ with A and M nonsingular, a simple iteration for the solution of $A\mathbf{x} = \mathbf{b}$ based on this splitting is:

choose \mathbf{x}_0 and solve $M\mathbf{x}_k = N\mathbf{x}_{k-1} + \mathbf{b}$ for $k = 1, 2, \dots$

(a) [9 marks] For a general matrix $A = \{a_{i,j}, i, j = 1, ..., m\}$, what is Gauss-Seidel iteration? Calculate the first two Gauss-Seidel iterate vectors, $\mathbf{x}_1, \mathbf{x}_2$ for the problem

$$\left[\begin{array}{cc} \frac{1}{2} & 2\\ 0 & \frac{1}{2} \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 0\\ 0 \end{array}\right]$$

starting with $\mathbf{x}_0 = [0, 1]^T$. Does the iteration converge to the solution \mathbf{x} ? Does the sequence $\{\|\mathbf{x}_k - \mathbf{x}\|_2, k = 0, 1, 2, ...\}$ reduce monotonically?

(b) [8 marks] What is a Jordan canonical form?
[You may assume that any square matrix has a Jordan canonical form.]
If for any particular splitting A = M - N we have that all of the eigenvalues of M⁻¹N lie strictly inside the unit disc, prove that the simple iteration based on this splitting must generate a sequence of iterates that converge to the solution for any x₀.
Further prove that if additionally M⁻¹N is symmetric, then

$$\|\mathbf{x}_k - \mathbf{x}\|_2 \leq \|\mathbf{x}_{k-1} - \mathbf{x}\|_2$$
 for each $k = 1, 2, \dots$

[Hint: Any symmetric matrix is orthogonally diagonalisable, so that there exists an orthonormal basis of eigenvectors.]

(c) [8 marks] Consider the nonsingular matrix

$$A = \begin{bmatrix} B & -I & 0 & \cdots & 0 \\ -I & B & -I & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -I \\ 0 & \cdots & 0 & -I & B \end{bmatrix}, \text{ where } B = \begin{bmatrix} 4+\epsilon & -1 & 0 & \cdots & 0 \\ -1 & 4+\epsilon & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & -1 & 4+\epsilon \end{bmatrix}$$

is a tridiagonal matrix with $B \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{n^2 \times n^2}$ and ϵ a positive constant. Prove that the simple iteration based on the splitting A = M - N with

$$M = \begin{bmatrix} B & 0 & 0 & \cdots & 0 \\ 0 & B & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & B \end{bmatrix} \in \mathbb{R}^{n^2 \times n^2}.$$

will generate a sequence that will converge to the solution of $A\mathbf{x} = \mathbf{b}$ for any \mathbf{b} and any \mathbf{x}_0 . Quote, but do not prove, any results that you use.