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Section A: Numerical Solution of Differential Equations

1. The solution [t0, T ] 3 t→ y(t) to the initial value problem

y′ = f(t,y) , y(t0) = y0 , (1)

satisfies

y(t+ h) = y(t) +

∫ t+h

t
f(τ,y(τ)) dτ . (2)

To devise a one-step method to solve (1), one can replace the integral on the right-hand side
of (2) with

h(1− θ)f(t,y(t)) + hθf(t+ h,y(t+ h))

where θ ∈ [0, 1] is a real parameter. The resulting scheme reads

Ψ(t, t+ h,y) = y + h(1− θ)f(t,y) + hθf(t+ h,Ψ(t, t+ h,y)) .

(a) [6 marks] Derive the Butcher table of this family of Runge-Kutta methods and write the
formulas of its Runge-Kutta stages. For which values of θ is the method explicit?

(b) [4 marks] Give the definition of consistency error and consistency order of a one-step
method.

(c) [10 marks] In the case that f is autonomous (so that f(t,y) = f(y)), use Taylor expansion
to verify that the Runge-Kutta scheme obtained by setting θ = 1 has consistency order 1.

(d) [5 marks] In the case that f(t,y) = Ay for a given matrix A, show that the scheme
obtained by setting θ = 1/2 preserves quadratic invariants. State clearly any results you
quote.
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2. We consider the following family of quadrature rules∫ b

a
f(τ) dτ ≈ (b− a)f

(
a+ θ(b− a)

)
,

where θ ∈ [0, 1] is a real parameter. In particular, note that
∫ 1
0 f(τ) dτ ≈ f(θ).

(a) [7 marks] Show that the Butcher table of the family of collocation Runge-Kutta methods
based on these quadratures reads

θ θ

1
.

[Hint: Let s > 1 and i ∈ {1, 2, . . . , s}. The i-th Lagrange polynomial associated to s
distinct points c1, . . . , cs is the polynomial of degree s− 1 that satisfies Li(cj) = δij.]

(b) [4 marks] Derive the stability function of this family of Runge-Kutta methods (keeping θ
generic).

(c) [4 marks] Give the definition of: (i) stability domain of a Runge-Kutta method, (ii) A-
stability, and (iii) L-stability.

(d) [4 marks] Consider the IVP

y′(t) = (−109 + 4i)y , y(0) = 1 .

and denote by {yk}k∈N a sequence of approximations obtained by employing: (i) an ex-
plicit Runge-Kutta method, (ii) an A-stable (but not L-stable) Runge-Kutta method, and
(iii) an L-stable Runge-Kutta method. For each case, describe the qualitative behaviour
of {yk}k∈N and compare it to the qualitative behaviour of the exact solution to this IVP.

(e) [6 marks] Show that, if the stability domain SΨ of a Runge-Kutta method Ψ satifies
SΨ = C−, then that Runge-Kutta Ψ method cannot be L-stable.

3. The first and second characteristic polynomials of the linear multi-step method BDF2 are

ρ(z) = z2 − 4

3
z +

1

3
and σ(z) =

2

3
z2 ,

respectively.

(a) [4 marks] Write the update formula of BDF2 in terms of h,yn,yn+1,yn+2, f(tn,yn),
f(tn+1,yn+1), and f(tn+2,yn+2).

(b) [7 marks] Give the definition of zero-stability of a linear k-step method and describe how
to verify this property using the root condition. Is BDF2 zero-stable?

(c) [7 marks] Show that
ρ(eh)− hσ(eh) = O(h3) .

What can you conclude about the consistency order of BDF2?

(d) [7 marks] The linear multi-step method

11

6
yn − 3yn−1 +

3

2
yn−2 −

1

3
yn−3 = hf(tn,yn) .

is implicit. Describe how to use Newton’s method to approximate yn provided that
yn−1,yn−2, and yn−3 are available.
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4. Consider the following parabolic boundary value problem

ut(t, x) = uxx(t, x) , for (t, x) ∈ (0, 1]× (0, 1)

with homogeneous Dirichlet boundary conditions.

(a) [8 marks] Following the method of lines, discretize this equation in space using a central
difference scheme and derive the associate system of ODEs.

(b) [4 marks] Show that for any k,∆x ∈ R and j ∈ N,

sin
(
k(j + 1)∆x

)
− 2 sin

(
kj∆x

)
+ sin

(
k(j − 1)∆x

)
= 2
(

cos(k∆x)− 1
)

sin
(
kj∆x)

)
.

(c) [6 marks] Let N = 1/∆x. Show that the eigenvectors of the matrix

K =


−2 1
1 −2 1

. . .
. . . 1
1 −2

 ∈ RN−1,N−1

are given by

z>p = (sin(pπ∆x), sin(2pπ∆x), . . . , sin((N − 1)pπ∆x)) , p = 1, . . . , N − 1 .

What are the corresponding eigenvalues?

(d) [7 marks] Show that Runge-Kutta methods are affine covariant when applied to a linear
system of ODEs y(t)′ = My(t), where y ∈ Rd and M ∈ Rd,d. State clearly any results
you quote.
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Section B: Numerical Linear Algebra

5. Throughout this question we consider a rectangular matrix A ∈ Rm×n and a nonsingular
matrix B ∈ Rn×n.

(a) [4 marks] What is a QR factorisation of A? You do not need to show that such a factori-
sation exists.

What is an LU factorisation of B? You do not need to show that such a factorisation
exists.

(b) [4 marks] If m > n, the columns of the given matrix A are linearly independent and
b ∈ Rm is also given, explain how to solve the linear least squares problem

min
x∈Rn

‖Ax− b‖2

using a QR factorisation.

(c) [2 marks] If QR = B = LU , identify an LU factorisation of Q.

(d) [3 marks] Supposing that all the required factorisations exist, let B = B1 and

for k = 1, 2, . . .
LkUk = Bk − µkI (ie. perform an LU factorisation of Bk − µkI)
Bk+1 = UkLk + µkI (ie. define Bk+1 by matrix multiplication and addition of µkI)

end

where µk ∈ R is such that Bk − µkI is invertible for every k = 1, 2, . . .. Prove that all of
the matrices {Bk, k = 1, 2, . . .} are mathematically similar to B1 = B.

(e) [5 marks] If the matrix B is perturbed to B + δB, prove that

‖δx‖2
‖x+ δx‖2

6 ‖B‖2‖B−1‖2
‖δB‖2
‖B‖2

where Bx = b and (B + δB)(x + δx) = b with x 6= −δx. What is the relevance of this
inequality to the computational solution of a linear system of equations?

(f) [7 marks] Calculate ‖B‖2‖B−1‖2 for the matrix

B =


1 1 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 .

Identify ‖C‖2‖C−1‖2 for the matrix

C =


1 1 0 0 0
0 2 0 0 0
0 0 3 1 0
0 0 1 4 0
0 0 0 0 5

?

Give your reasoning.
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6. If A = M − N ∈ Rm×m with A and M nonsingular, a simple iteration for the solution of
Ax = b based on this splitting is:
choose x0 and solve Mxk = Nxk−1 + b for k = 1, 2, . . ..

(a) [9 marks] For a general matrix A = {ai,j , i, j = 1, . . . ,m}, what is Gauss-Seidel iteration?

Calculate the first two Gauss-Seidel iterate vectors, x1,x2 for the problem[
1
2 2
0 1

2

]
x =

[
0
0

]
starting with x0 = [0, 1]T . Does the iteration converge to the solution x? Does the
sequence {‖xk − x‖2, k = 0, 1, 2, . . .} reduce monotonically?

(b) [8 marks] What is a Jordan canonical form?

[You may assume that any square matrix has a Jordan canonical form.]

If for any particular splitting A = M −N we have that all of the eigenvalues of M−1N lie
strictly inside the unit disc, prove that the simple iteration based on this splitting must
generate a sequence of iterates that converge to the solution for any x0.

Further prove that if additionally M−1N is symmetric, then

‖xk − x‖2 6 ‖xk−1 − x‖2 for each k = 1, 2, . . . .

[Hint: Any symmetric matrix is orthogonally diagonalisable, so that there exists an or-
thonormal basis of eigenvectors.]

(c) [8 marks] Consider the nonsingular matrix

A =



B −I 0 · · · 0

−I B −I . . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −I

0 · · · 0 −I B


, where B =



4 + ε −1 0 · · · 0

−1 4 + ε −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 4 + ε


is a tridiagonal matrix with B ∈ Rn×n, A ∈ Rn2×n2

and ε a positive constant.

Prove that the simple iteration based on the splitting A = M −N with

M =



B 0 0 · · · 0

0 B 0
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 0 B


∈ Rn2×n2

.

will generate a sequence that will converge to the solution of Ax = b for any b and any
x0. Quote, but do not prove, any results that you use.
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