B1 Numerical Linear Algebra and Numerical Solution of Differential Equations

HILARY TERM 2018

FRIDAY, 12 JANUARY 2018, 9.30am to 11.30am

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question in a new booklet.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so

Section A: Numerical Solution of Differential Equations

1. The solution $\left[t_{0}, T\right] \ni t \rightarrow \mathbf{y}(t)$ to the initial value problem

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}), \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \tag{1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\mathbf{y}(t+h)=\mathbf{y}(t)+\int_{t}^{t+h} \mathbf{f}(\tau, \mathbf{y}(\tau)) \mathrm{d} \tau \tag{2}
\end{equation*}
$$

To devise a one-step method to solve (1), one can replace the integral on the right-hand side of (2) with

$$
h(1-\theta) \mathbf{f}(t, \mathbf{y}(t))+h \theta \mathbf{f}(t+h, \mathbf{y}(t+h))
$$

where $\theta \in[0,1]$ is a real parameter. The resulting scheme reads

$$
\boldsymbol{\Psi}(t, t+h, \mathbf{y})=\mathbf{y}+h(1-\theta) \mathbf{f}(t, \mathbf{y})+h \theta \mathbf{f}(t+h, \boldsymbol{\Psi}(t, t+h, \mathbf{y}))
$$

(a) [6 marks] Derive the Butcher table of this family of Runge-Kutta methods and write the formulas of its Runge-Kutta stages. For which values of θ is the method explicit?
(b) [4 marks] Give the definition of consistency error and consistency order of a one-step method.
(c) [10 marks] In the case that \mathbf{f} is autonomous (so that $\mathbf{f}(t, \mathbf{y})=\mathbf{f}(\mathbf{y})$), use Taylor expansion to verify that the Runge-Kutta scheme obtained by setting $\theta=1$ has consistency order 1 .
(d) [5 marks] In the case that $\mathbf{f}(t, \mathbf{y})=\mathbf{A y}$ for a given matrix \mathbf{A}, show that the scheme obtained by setting $\theta=1 / 2$ preserves quadratic invariants. State clearly any results you quote.
2. We consider the following family of quadrature rules

$$
\int_{a}^{b} f(\tau) \mathrm{d} \tau \approx(b-a) f(a+\theta(b-a))
$$

where $\theta \in[0,1]$ is a real parameter. In particular, note that $\int_{0}^{1} f(\tau) \mathrm{d} \tau \approx f(\theta)$.
(a) [7 marks] Show that the Butcher table of the family of collocation Runge-Kutta methods based on these quadratures reads

$$
\begin{array}{l|l}
\theta & \theta \\
\hline & 1 .
\end{array}
$$

[Hint: Let $s \geqslant 1$ and $i \in\{1,2, \ldots, s\}$. The i-th Lagrange polynomial associated to s distinct points c_{1}, \ldots, c_{s} is the polynomial of degree $s-1$ that satisfies $L_{i}\left(c_{j}\right)=\delta_{i j}$.]
(b) [4 marks] Derive the stability function of this family of Runge-Kutta methods (keeping θ generic).
(c) [4 marks] Give the definition of: (i) stability domain of a Runge-Kutta method, (ii) A stability, and (iii) L-stability.
(d) [4 marks] Consider the IVP

$$
y^{\prime}(t)=\left(-10^{9}+4 i\right) y, \quad y(0)=1 .
$$

and denote by $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ a sequence of approximations obtained by employing: (i) an explicit Runge-Kutta method, (ii) an A-stable (but not L-stable) Runge-Kutta method, and (iii) an L-stable Runge-Kutta method. For each case, describe the qualitative behaviour of $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ and compare it to the qualitative behaviour of the exact solution to this IVP.
(e) [6 marks] Show that, if the stability domain S_{Ψ} of a Runge-Kutta method Ψ satifies $S_{\Psi}=\mathbb{C}^{-}$, then that Runge-Kutta Ψ method cannot be L-stable.
3. The first and second characteristic polynomials of the linear multi-step method BDF2 are

$$
\rho(z)=z^{2}-\frac{4}{3} z+\frac{1}{3} \quad \text { and } \quad \sigma(z)=\frac{2}{3} z^{2},
$$

respectively.
(a) [4 marks] Write the update formula of BDF2 in terms of $h, \mathbf{y}_{n}, \mathbf{y}_{n+1}, \mathbf{y}_{n+2}, \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)$, $\mathbf{f}\left(t_{n+1}, \mathbf{y}_{n+1}\right)$, and $\mathbf{f}\left(t_{n+2}, \mathbf{y}_{n+2}\right)$.
(b) [7 marks] Give the definition of zero-stability of a linear k-step method and describe how to verify this property using the root condition. Is BDF2 zero-stable?
(c) [7 marks] Show that

$$
\rho\left(\mathrm{e}^{h}\right)-h \sigma\left(\mathrm{e}^{h}\right)=\mathcal{O}\left(h^{3}\right) .
$$

What can you conclude about the consistency order of BDF2?
(d) [7 marks] The linear multi-step method

$$
\frac{11}{6} \mathbf{y}_{n}-3 \mathbf{y}_{n-1}+\frac{3}{2} \mathbf{y}_{n-2}-\frac{1}{3} \mathbf{y}_{n-3}=h \mathbf{f}\left(t_{n}, \mathbf{y}_{n}\right)
$$

is implicit. Describe how to use Newton's method to approximate \mathbf{y}_{n} provided that $\mathbf{y}_{n-1}, \mathbf{y}_{n-2}$, and \mathbf{y}_{n-3} are available.
4. Consider the following parabolic boundary value problem

$$
u_{t}(t, x)=u_{x x}(t, x), \quad \text { for }(t, x) \in(0,1] \times(0,1)
$$

with homogeneous Dirichlet boundary conditions.
(a) [8 marks] Following the method of lines, discretize this equation in space using a central difference scheme and derive the associate system of ODEs.
(b) [4 marks] Show that for any $k, \Delta x \in \mathbb{R}$ and $j \in \mathbb{N}$,

$$
\sin (k(j+1) \Delta x)-2 \sin (k j \Delta x)+\sin (k(j-1) \Delta x)=2(\cos (k \Delta x)-1) \sin (k j \Delta x)) .
$$

(c) [6 marks] Let $N=1 / \Delta x$. Show that the eigenvectors of the matrix

$$
\mathbf{K}=\left(\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & 1 & \\
& \ddots & \ddots & 1 \\
& & 1 & -2
\end{array}\right) \in \mathbb{R}^{N-1, N-1}
$$

are given by

$$
\mathbf{z}_{p}^{\top}=(\sin (p \pi \Delta x), \sin (2 p \pi \Delta x), \ldots, \sin ((N-1) p \pi \Delta x)), \quad p=1, \ldots, N-1 .
$$

What are the corresponding eigenvalues?
(d) [7 marks] Show that Runge-Kutta methods are affine covariant when applied to a linear system of ODEs $\mathbf{y}(t)^{\prime}=\mathbf{M y}(t)$, where $\mathbf{y} \in \mathbb{R}^{d}$ and $\mathbf{M} \in \mathbb{R}^{d, d}$. State clearly any results you quote.

Section B: Numerical Linear Algebra

5. Throughout this question we consider a rectangular matrix $A \in \mathbb{R}^{m \times n}$ and a nonsingular matrix $B \in \mathbb{R}^{n \times n}$.
(a) [4 marks] What is a $Q R$ factorisation of A ? You do not need to show that such a factorisation exists.
What is an $L U$ factorisation of B ? You do not need to show that such a factorisation exists.
(b) [4 marks] If $m>n$, the columns of the given matrix A are linearly independent and $b \in \mathbb{R}^{m}$ is also given, explain how to solve the linear least squares problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}
$$

using a $Q R$ factorisation.
(c) [2 marks] If $Q R=B=L U$, identify an $L U$ factorisation of Q.
(d) [3 marks] Supposing that all the required factorisations exist, let $B=B_{1}$ and

$$
\begin{aligned}
& \text { for } k=1,2, \ldots \\
& \qquad \begin{array}{l}
L_{k} U_{k}=B_{k}-\mu_{k} I \\
B_{k+1}=U_{k} L_{k}+\mu_{k} I
\end{array} \quad \text { (ie. perform an } L U \text { factorisation of } B_{k}-\mu_{k} I \text {) } \\
& \text { end }
\end{aligned}
$$

where $\mu_{k} \in \mathbb{R}$ is such that $B_{k}-\mu_{k} I$ is invertible for every $k=1,2, \ldots$ Prove that all of the matrices $\left\{B_{k}, k=1,2, \ldots\right\}$ are mathematically similar to $B_{1}=B$.
(e) [5 marks] If the matrix B is perturbed to $B+\delta B$, prove that

$$
\frac{\|\delta x\|_{2}}{\|x+\delta x\|_{2}} \leqslant\|B\|_{2}\left\|B^{-1}\right\|_{2} \frac{\|\delta B\|_{2}}{\|B\|_{2}}
$$

where $B x=b$ and $(B+\delta B)(x+\delta x)=b$ with $x \neq-\delta x$. What is the relevance of this inequality to the computational solution of a linear system of equations?
(f) [7 marks] Calculate $\|B\|_{2}\left\|B^{-1}\right\|_{2}$ for the matrix

$$
B=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]
$$

Identify $\|C\|_{2}\left\|C^{-1}\right\|_{2}$ for the matrix

$$
C=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right] ?
$$

Give your reasoning.
6. If $A=M-N \in \mathbb{R}^{m \times m}$ with A and M nonsingular, a simple iteration for the solution of $A \mathbf{x}=\mathbf{b}$ based on this splitting is:
choose \mathbf{x}_{0} and solve $M \mathbf{x}_{k}=N \mathbf{x}_{k-1}+\mathbf{b}$ for $k=1,2, \ldots$
(a) [9 marks] For a general matrix $A=\left\{a_{i, j}, i, j=1, \ldots, m\right\}$, what is Gauss-Seidel iteration? Calculate the first two Gauss-Seidel iterate vectors, $\mathbf{x}_{1}, \mathbf{x}_{2}$ for the problem

$$
\left[\begin{array}{cc}
\frac{1}{2} & 2 \\
0 & \frac{1}{2}
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

starting with $\mathbf{x}_{0}=[0,1]^{T}$. Does the iteration converge to the solution \mathbf{x} ? Does the sequence $\left\{\left\|\mathbf{x}_{k}-\mathbf{x}\right\|_{2}, k=0,1,2, \ldots\right\}$ reduce monotonically?
(b) [8 marks] What is a Jordan canonical form?
[You may assume that any square matrix has a Jordan canonical form.]
If for any particular splitting $A=M-N$ we have that all of the eigenvalues of $M^{-1} N$ lie strictly inside the unit disc, prove that the simple iteration based on this splitting must generate a sequence of iterates that converge to the solution for any \mathbf{x}_{0}.
Further prove that if additionally $M^{-1} N$ is symmetric, then

$$
\left\|\mathbf{x}_{k}-\mathbf{x}\right\|_{2} \leqslant\left\|\mathbf{x}_{k-1}-\mathbf{x}\right\|_{2} \quad \text { for each } \quad k=1,2, \ldots
$$

[Hint: Any symmetric matrix is orthogonally diagonalisable, so that there exists an orthonormal basis of eigenvectors.]
(c) [8 marks] Consider the nonsingular matrix

$$
A=\left[\begin{array}{ccccc}
B & -I & 0 & \cdots & 0 \\
-I & B & -I & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -I \\
0 & \cdots & 0 & -I & B
\end{array}\right], \text { where } B=\left[\begin{array}{ccccc}
4+\epsilon & -1 & 0 & \cdots & 0 \\
-1 & 4+\epsilon & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & 0 & -1 & 4+\epsilon
\end{array}\right]
$$

is a tridiagonal matrix with $B \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n^{2} \times n^{2}}$ and ϵ a positive constant.
Prove that the simple iteration based on the splitting $A=M-N$ with

$$
M=\left[\begin{array}{ccccc}
B & 0 & 0 & \cdots & 0 \\
0 & B & 0 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & B
\end{array}\right] \in \mathbb{R}^{n^{2} \times n^{2}}
$$

will generate a sequence that will converge to the solution of $A \mathbf{x}=\mathbf{b}$ for any \mathbf{b} and any \mathbf{x}_{0}. Quote, but do not prove, any results that you use.

